Difference between revisions of "Q-Cos"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$ and $(q;q)_{2k}$...")
 
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
{{:q-Euler formula for e sub q}}
+
{{:q-Euler formula for E sub q}}
  
 
=References=
 
=References=
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]

Revision as of 23:51, 3 May 2015

The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$ and $(q;q)_{2k}$ denotes the $q$-Pochhammer symbol.

Properties

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References

References

[1]