Difference between revisions of "Q-Cos"
From specialfunctionswiki
(Created page with "The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$ and $(q;q)_{2k}$...") |
|||
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
− | {{:q-Euler formula for | + | {{:q-Euler formula for E sub q}} |
=References= | =References= | ||
[http://homepage.tudelft.nl/11r49/documents/as98.pdf] | [http://homepage.tudelft.nl/11r49/documents/as98.pdf] |
Revision as of 23:51, 3 May 2015
The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$ and $(q;q)_{2k}$ denotes the $q$-Pochhammer symbol.
Properties
Theorem
The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.