Difference between revisions of "Q-Cos"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The function $\mathrm{Cos}_q$ is defined by
 
The function $\mathrm{Cos}_q$ is defined by
 
$$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$
 
$$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$
where $E_q$ denotes the [[q-exponential E|$q$-exponential $E$]] and $(q;q)_{2k}$ denotes the [[q-Pochhammer|$q$-Pochhammer symbol]].
+
where $E_q$ denotes the [[q-exponential E|$q$-exponential $E$]].
  
 
=Properties=
 
=Properties=

Revision as of 23:53, 3 May 2015

The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$.

Properties

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References

References

[1]