Difference between revisions of "Basic hypergeometric phi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The basic hypergeometric series $\phi$ is defined by $${}_j \phi_k \left[ \begin{array}{llllll} a_1 & a_2 & \ldots & a_j \\ & & & & ; q,z \\ b_1 & b_2 & \ld...")
 
Line 1: Line 1:
The basic hypergeometric series $\phi$ is defined by
+
The basic hypergeometric series ${}_j\phi{}_{\ell}$ is defined by
$${}_j \phi_k \left[ \begin{array}{llllll}
+
$${}_j \phi_{\ell} \left[ \begin{array}{llllll}
 
a_1 & a_2 & \ldots & a_j \\
 
a_1 & a_2 & \ldots & a_j \\
 
     &    &        &    & ; q,z \\
 
     &    &        &    & ; q,z \\
 
b_1 & b_2 & \ldots & b_{\ell}
 
b_1 & b_2 & \ldots & b_{\ell}
 
\end{array}\right]=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1;q)_k \ldots (a_j;q)_k}{(b_1;q)_k \ldots (b_{\ell};q)_k} \left((-1)^kq^{k \choose 2} \right)^{1+\ell-j}z^n.$$
 
\end{array}\right]=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1;q)_k \ldots (a_j;q)_k}{(b_1;q)_k \ldots (b_{\ell};q)_k} \left((-1)^kq^{k \choose 2} \right)^{1+\ell-j}z^n.$$

Revision as of 07:26, 6 May 2015

The basic hypergeometric series ${}_j\phi{}_{\ell}$ is defined by $${}_j \phi_{\ell} \left[ \begin{array}{llllll} a_1 & a_2 & \ldots & a_j \\

   &     &        &     & ; q,z \\

b_1 & b_2 & \ldots & b_{\ell} \end{array}\right]=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1;q)_k \ldots (a_j;q)_k}{(b_1;q)_k \ldots (b_{\ell};q)_k} \left((-1)^kq^{k \choose 2} \right)^{1+\ell-j}z^n.$$