Difference between revisions of "Spherical Bessel j"
From specialfunctionswiki
(Created page with "The spherical Bessel function of the first kind is defined by $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ where $J_{\nu}$ denotes the Bessel J sub nu|Bess...") |
|||
Line 2: | Line 2: | ||
$$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ | $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ | ||
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]]. | where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]]. | ||
+ | |||
+ | =Properties= | ||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$1=\displaystyle\sum_{k=0}^{\infty} (2k+1)j_k(z)^2.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> |
Revision as of 05:28, 16 May 2015
The spherical Bessel function of the first kind is defined by $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ where $J_{\nu}$ denotes the Bessel function of the first kind.
Properties
Theorem: The following formula holds: $$1=\displaystyle\sum_{k=0}^{\infty} (2k+1)j_k(z)^2.$$
Proof: █