Difference between revisions of "Spherical Bessel j"
From specialfunctionswiki
Line 5: | Line 5: | ||
=Properties= | =Properties= | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong> | + | <strong>Proposition:</strong> The following formula holds: |
$$1=\displaystyle\sum_{k=0}^{\infty} (2k+1)j_k(z)^2.$$ | $$1=\displaystyle\sum_{k=0}^{\infty} (2k+1)j_k(z)^2.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Proposition:</strong> The following formula holds: | ||
+ | $$\dfrac{\sin(2z)}{2z} = \displaystyle\sum_{k=0}^{\infty} (-1)^k(2k+1)j_k(z)^2.$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 05:29, 16 May 2015
The spherical Bessel function of the first kind is defined by $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ where $J_{\nu}$ denotes the Bessel function of the first kind.
Properties
Proposition: The following formula holds: $$1=\displaystyle\sum_{k=0}^{\infty} (2k+1)j_k(z)^2.$$
Proof: █
Proposition: The following formula holds: $$\dfrac{\sin(2z)}{2z} = \displaystyle\sum_{k=0}^{\infty} (-1)^k(2k+1)j_k(z)^2.$$
Proof: █