Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
 +
File:Arcsinhplot.png|Plot of $\mathrm{arcsinh}$ on $[-10,10]$.
 
File:Complex ArcSinh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arcsinh}$.
 
File:Complex ArcSinh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arcsinh}$.
 
</gallery>
 
</gallery>

Revision as of 09:32, 9 November 2015

The $\mathrm{arcsinh}$ function is the inverse function of the hyperbolic sine function defined by $$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$

Properties

Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$

Proof:

<center>Inverse hyperbolic trigonometric functions
</center>