Difference between revisions of "Takagi function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by
+
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function (also called the Takagi function) is defined by
 
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
 
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
  

Revision as of 23:02, 31 December 2015

Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function (also called the Takagi function) is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$