Difference between revisions of "Modified Bessel I"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$
 
$$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$
 
where $J_{\nu}$ is the [[Bessel J sub nu|Bessel function of the first kind]].
 
where $J_{\nu}$ is the [[Bessel J sub nu|Bessel function of the first kind]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Complex modified besselI sub 1.png|[[Domain coloring]] of [[analytic continuation]].
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 06:23, 18 May 2015

The modified Bessel function of the first kind is defined by $$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$ where $J_{\nu}$ is the Bessel function of the first kind.

Properties

Proposition: The following formula holds: $$I_{-\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}} \cosh(z).$$

Proof:

Proposition: The following formula holds: $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z).$$

Proof:

Proposition: The following formula holds: $$I_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} J_{\nu+k}(z) \dfrac{z^k}{k!},$$ where $J_{\nu}$ denotes the Bessel function of the first kind.

Proof:

Theorem

The following formula holds: $$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ where $\mathrm{Bi}$ denotes the Airy Bi function and $I_{\nu}$ denotes the modified Bessel $I$.

Proof

References