Difference between revisions of "Modified Bessel I"
Line 5: | Line 5: | ||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
− | File:Complex modified besselI sub 1.png|[[Domain coloring]] of [[analytic continuation]]. | + | File:Complex modified besselI sub 1.png|[[Domain coloring]] of [[analytic continuation]] of $I_1(z)$. |
</gallery> | </gallery> | ||
</div> | </div> |
Revision as of 06:24, 18 May 2015
The modified Bessel function of the first kind is defined by $$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$ where $J_{\nu}$ is the Bessel function of the first kind.
Domain coloring of analytic continuation of $I_1(z)$.
Contents
Properties
Proposition: The following formula holds: $$I_{-\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}} \cosh(z).$$
Proof: █
Proposition: The following formula holds: $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z).$$
Proof: █
Proposition: The following formula holds: $$I_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} J_{\nu+k}(z) \dfrac{z^k}{k!},$$ where $J_{\nu}$ denotes the Bessel function of the first kind.
Proof: █
Theorem
The following formula holds: $$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ where $\mathrm{Bi}$ denotes the Airy Bi function and $I_{\nu}$ denotes the modified Bessel $I$.