Difference between revisions of "Q-Binomial coefficient"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $q$-Binomial coefficient is $$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$ where $(q;q)_{\xi}$ denotes the q-Pochhammer...")
 
Line 2: Line 2:
 
$$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$
 
$$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$
 
where $(q;q)_{\xi}$ denotes the [[q-Pochhammer symbol]].
 
where $(q;q)_{\xi}$ denotes the [[q-Pochhammer symbol]].
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:55, 24 May 2016

The $q$-Binomial coefficient is $$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$ where $(q;q)_{\xi}$ denotes the q-Pochhammer symbol.