Difference between revisions of "Q-Binomial coefficient"
From specialfunctionswiki
(Created page with "The $q$-Binomial coefficient is $$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$ where $(q;q)_{\xi}$ denotes the q-Pochhammer...") |
|||
Line 2: | Line 2: | ||
$$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$ | $$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$ | ||
where $(q;q)_{\xi}$ denotes the [[q-Pochhammer symbol]]. | where $(q;q)_{\xi}$ denotes the [[q-Pochhammer symbol]]. | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:55, 24 May 2016
The $q$-Binomial coefficient is $$\left[ \begin{array}{ll} n \\ k \end{array} \right]_q = \dfrac{(q;q)_n}{(q;q)_k(q;q)_{n-k}},$$ where $(q;q)_{\xi}$ denotes the q-Pochhammer symbol.