Difference between revisions of "0F0(;;z)=exp(z)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$e^z={}_0F_0(;;z),$$ where ${}_0F_0$ denotes the hypergeometric...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Exponential in terms of hypergeometric 0F0|Theorem]]:</strong> The following formula holds:
 
$$e^z={}_0F_0(;;z),$$
 
$$e^z={}_0F_0(;;z),$$
 
where ${}_0F_0$ denotes the [[hypergeometric pFq]] and $e^z$ denotes the [[exponential]].
 
where ${}_0F_0$ denotes the [[hypergeometric pFq]] and $e^z$ denotes the [[exponential]].

Revision as of 05:41, 8 February 2016

Theorem: The following formula holds: $$e^z={}_0F_0(;;z),$$ where ${}_0F_0$ denotes the hypergeometric pFq and $e^z$ denotes the exponential.

Proof: