Difference between revisions of "Relationship between sine and hypergeometric 0F1"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\sin(z)=z{}_...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Relationship between sine and hypergeometric 0F1|Theorem]]:</strong> The following formula holds: | <strong>[[Relationship between sine and hypergeometric 0F1|Theorem]]:</strong> The following formula holds: | ||
− | $$\sin( | + | $$\sin(az)=az{}_0F_1 \left(;\dfrac{3}{2};-\dfrac{(az)^2}{4} \right),$$ |
where $\sin$ denotes the [[sine]] and ${}_0F_1$ denotes the [[hypergeometric pFq]]. | where $\sin$ denotes the [[sine]] and ${}_0F_1$ denotes the [[hypergeometric pFq]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 04:00, 19 August 2015
Theorem: The following formula holds: $$\sin(az)=az{}_0F_1 \left(;\dfrac{3}{2};-\dfrac{(az)^2}{4} \right),$$ where $\sin$ denotes the sine and ${}_0F_1$ denotes the hypergeometric pFq.
Proof: █