Difference between revisions of "Weierstrass elliptic"
From specialfunctionswiki
(Created page with "The Weierstrass elliptic function is $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(...") |
|||
Line 1: | Line 1: | ||
The Weierstrass elliptic function is | The Weierstrass elliptic function is | ||
$$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$ | $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:38, 24 May 2016
The Weierstrass elliptic function is $$\wp(z;\omega_1,\omega_2)=\dfrac{1}{z^2} + \displaystyle\sum_{n^2+m^2 \neq 0} \left\{ \dfrac{1}{(z+m\omega_1+n\omega_2)^2} - \dfrac{1}{(m\omega_1+n\omega_2)^2} \right\}.$$