Difference between revisions of "Kelvin bei"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$ | $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$ | ||
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]]. | where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]]. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Domcolkelvinbeisub0.png|[[Domain coloring]] of $\mathrm{bei}_0$. | ||
+ | </gallery> | ||
+ | </div> |
Revision as of 03:15, 21 August 2015
The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{bei}_0$.