Difference between revisions of "Elliptic function"

From specialfunctionswiki
Jump to: navigation, search
Line 50: Line 50:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=References=
 +
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_629.htm]

Revision as of 17:57, 25 July 2015

A function $f$ is called elliptic if it is a doubly periodic function and it is meromorphic.

Properties

Theorem: All constant functions are elliptic functions.

Proof:

Theorem: A nonconstant elliptic function has a fundamental pair of periods.

Proof:

Theorem: If an elliptic function $f$ has no poles in some period parallelogram, then $f$ is a constant function.

Proof:

Theorem: If an elliptic function $f$ has no zeros in some period parallelogram, then $f$ is a constant function.

Proof:

Theorem: The contour integral of an elliptic function taken along the boundary of any cell equals zero.

Proof:

Theorem: The sum of the residues of an elliptic function at its poles in any period parallelogram equals zero.

Proof:

Theorem: The number of zeros of an elliptic function in and period parallelogram equals the number of poles, counted with multiplicity.

Proof:

References

[1]