Difference between revisions of "Pidduck polynomial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Pidduck polynomials $s_n(x)$ are given by $$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$")
 
 
Line 1: Line 1:
 
The Pidduck polynomials $s_n(x)$ are given by
 
The Pidduck polynomials $s_n(x)$ are given by
 
$$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$
 
$$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:43, 24 May 2016

The Pidduck polynomials $s_n(x)$ are given by $$\left( \dfrac{1+t}{1-t} \right)^x \dfrac{1}{1-t} = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$