Difference between revisions of "Relationship between Anger function and Weber function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following for...")
 
Line 2: Line 2:
 
<strong>[[Relationship between Anger function and Weber function|Theorem]]:</strong> The following formula holds:
 
<strong>[[Relationship between Anger function and Weber function|Theorem]]:</strong> The following formula holds:
 
$$\sin(\nu\pi)\mathbf{J}_{\nu}(z)=\cos(\nu \pi)\mathbf{E}_{\nu}(z)-\mathbf{E}_{-\nu}(z),$$
 
$$\sin(\nu\pi)\mathbf{J}_{\nu}(z)=\cos(\nu \pi)\mathbf{E}_{\nu}(z)-\mathbf{E}_{-\nu}(z),$$
where $\mathbf{J}_{\nu}$ denotes an [[Anger function]] and $\mathbf{E}_{\nu}$ denotes a Weber function.
+
where $\mathbf{J}_{\nu}$ denotes an [[Anger function]] and $\mathbf{E}_{\nu}$ denotes a [[Weber function]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █  
 
<strong>Proof:</strong>  █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 18:13, 28 June 2015

Theorem: The following formula holds: $$\sin(\nu\pi)\mathbf{J}_{\nu}(z)=\cos(\nu \pi)\mathbf{E}_{\nu}(z)-\mathbf{E}_{-\nu}(z),$$ where $\mathbf{J}_{\nu}$ denotes an Anger function and $\mathbf{E}_{\nu}$ denotes a Weber function.

Proof: