Difference between revisions of "Relationship between Bessel I sub 1/2 and sinh"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$I_{\frac{1}{2}...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Relationship between Bessel I sub 1/2 and sinh|Theorem]]:</strong> The following formula holds: | <strong>[[Relationship between Bessel I sub 1/2 and sinh|Theorem]]:</strong> The following formula holds: | ||
− | $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z) | + | $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z),$$ |
+ | where $I_{\frac{1}{2}}$ denotes the [[Modfied Bessel I sub nu|modified Bessel function of the first kind]] and $\sinh$ denotes the [[Sinh|hyperbolic sine]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 00:30, 5 July 2015
Theorem: The following formula holds: $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z),$$ where $I_{\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\sinh$ denotes the hyperbolic sine.
Proof: █