Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula
 
The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula
$$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} dt,$$
+
$$\mathrm{chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} \mathrm{d}t,$$
 
where $\gamma$ denotes the [[Euler-Mascheroni constant]], $\log$ denotes the [[logarithm]], and $\mathrm{cosh}$ denotes the [[cosh|hyperbolic cosine]] function.
 
where $\gamma$ denotes the [[Euler-Mascheroni constant]], $\log$ denotes the [[logarithm]], and $\mathrm{cosh}$ denotes the [[cosh|hyperbolic cosine]] function.
  

Revision as of 21:49, 23 May 2016

The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} \mathrm{d}t,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\mathrm{cosh}$ denotes the hyperbolic cosine function.

<center>$\ast$-integral functions
</center>