Difference between revisions of "Relationship between sine and hypergeometric 0F1"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
<strong>[[Relationship between sine and hypergeometric 0F1|Theorem]]:</strong> The following formula holds:
 
<strong>[[Relationship between sine and hypergeometric 0F1|Theorem]]:</strong> The following formula holds:
 
$$\sin(az)=az{}_0F_1 \left(;\dfrac{3}{2};-\dfrac{(az)^2}{4} \right),$$
 
$$\sin(az)=az{}_0F_1 \left(;\dfrac{3}{2};-\dfrac{(az)^2}{4} \right),$$
where $\sin$ denotes the [[sine]] and ${}_0F_1$ denotes the [[hypergeometric pFq]].
+
where $\sin$ denotes the [[sine]] function and ${}_0F_1$ denotes the [[hypergeometric pFq]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 04:00, 19 August 2015

Theorem: The following formula holds: $$\sin(az)=az{}_0F_1 \left(;\dfrac{3}{2};-\dfrac{(az)^2}{4} \right),$$ where $\sin$ denotes the sine function and ${}_0F_1$ denotes the hypergeometric pFq.

Proof: