Difference between revisions of "Jacobi cs"
From specialfunctionswiki
Line 13: | Line 13: | ||
<center>{{:Jacobi elliptic functions footer}}</center> | <center>{{:Jacobi elliptic functions footer}}</center> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:38, 24 May 2016
The $\mathrm{cs}$ function is defined by $$\mathrm{cs}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{sn}(u)},$$ where $\mathrm{cn}$ is the Jacobi cn function and $\mathrm{sn}$ is the Jacobi sn function.
Domain coloring of $\mathrm{cs}$ corresponding to $m=0.8$.
References
Special functions by Leon Hall