Difference between revisions of "Kelvin ber"
From specialfunctionswiki
Line 1: | Line 1: | ||
The $\mathrm{ber}_{\nu}$ function is defined as | The $\mathrm{ber}_{\nu}$ function is defined as | ||
− | $$\mathrm{ber}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ | + | $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ |
where $\mathrm{Re}$ denotes the [[real part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]]. | where $\mathrm{Re}$ denotes the [[real part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]]. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Domcolkelvinbersub0.png|[[Domain coloring]] of $\mathrm{ber}_0$. | ||
+ | </gallery> | ||
+ | </div> |
Revision as of 03:12, 21 August 2015
The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{ber}_0$.