Difference between revisions of "Relationship between cot and coth"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cot(z)=i\coth(iz),$$ where $\cot$ denotes the cotangent and...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Relationship between cot and coth|Theorem]]:</strong> The following formula holds:
 
$$\cot(z)=i\coth(iz),$$
 
$$\cot(z)=i\coth(iz),$$
 
where $\cot$ denotes the [[cotangent]] and $\coth$ denotes the [[coth|hyperbolic cotangent]].
 
where $\cot$ denotes the [[cotangent]] and $\coth$ denotes the [[coth|hyperbolic cotangent]].

Revision as of 18:55, 25 August 2015

Theorem: The following formula holds: $$\cot(z)=i\coth(iz),$$ where $\cot$ denotes the cotangent and $\coth$ denotes the hyperbolic cotangent.

Proof: