Difference between revisions of "Relationship between cot and coth"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cot(z)=i\coth(iz),$$ where $\cot$ denotes the cotangent and...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> The following formula holds: | + | <strong>[[Relationship between cot and coth|Theorem]]:</strong> The following formula holds: |
$$\cot(z)=i\coth(iz),$$ | $$\cot(z)=i\coth(iz),$$ | ||
where $\cot$ denotes the [[cotangent]] and $\coth$ denotes the [[coth|hyperbolic cotangent]]. | where $\cot$ denotes the [[cotangent]] and $\coth$ denotes the [[coth|hyperbolic cotangent]]. |
Revision as of 18:55, 25 August 2015
Theorem: The following formula holds: $$\cot(z)=i\coth(iz),$$ where $\cot$ denotes the cotangent and $\coth$ denotes the hyperbolic cotangent.
Proof: █