Difference between revisions of "Relationship between cosine, Gudermannian, and sech"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cos(\mathrm{gd})(x)=\sech(x),$$ where $\cos$ denotes the cosin...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
<strong>Theorem:</strong> The following formula holds:
$$\cos(\mathrm{gd})(x)=\sech(x),$$
+
$$\cos(\mathrm{gd})(x)=\mathrm{sech}(x),$$
where $\cos$ denotes the [[cosine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\sech$ denotes the [[sech|hyperbolic secant]].
+
where $\cos$ denotes the [[cosine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 22:49, 25 August 2015

Theorem: The following formula holds: $$\cos(\mathrm{gd})(x)=\mathrm{sech}(x),$$ where $\cos$ denotes the cosine, $\mathrm{gd}$ denotes the Gudermannian, and $\mathrm{sech}$ denotes the hyperbolic secant.

Proof: