Difference between revisions of "Relationship between cosine, Gudermannian, and sech"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cos(\mathrm{gd})(x)=\sech(x),$$ where $\cos$ denotes the cosin...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>Theorem:</strong> The following formula holds: | <strong>Theorem:</strong> The following formula holds: | ||
− | $$\cos(\mathrm{gd})(x)=\sech(x),$$ | + | $$\cos(\mathrm{gd})(x)=\mathrm{sech}(x),$$ |
− | where $\cos$ denotes the [[cosine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\sech$ denotes the [[sech|hyperbolic secant]]. | + | where $\cos$ denotes the [[cosine]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 22:49, 25 August 2015
Theorem: The following formula holds: $$\cos(\mathrm{gd})(x)=\mathrm{sech}(x),$$ where $\cos$ denotes the cosine, $\mathrm{gd}$ denotes the Gudermannian, and $\mathrm{sech}$ denotes the hyperbolic secant.
Proof: █