Difference between revisions of "Relationship between csc, Gudermannian, and coth"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\csc(\mathrm{gd}(x))=\mathrm{coth}(x),$$ where $\csc$ is the co...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Relationship between csc, Gudermannian, and coth|Theorem]]:</strong> The following formula holds:
 
$$\csc(\mathrm{gd}(x))=\mathrm{coth}(x),$$
 
$$\csc(\mathrm{gd}(x))=\mathrm{coth}(x),$$
where $\csc$ is the [[cosecant]], $\mathrm{gd}$ is the Gudermannian, and $\mathrm{coth}$ is the [[coth|hyperbolic cotangent]].
+
where $\csc$ is the [[cosecant]], $\mathrm{gd}$ is the [[Gudermannian]], and $\mathrm{coth}$ is the [[coth|hyperbolic cotangent]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 22:58, 25 August 2015

Theorem: The following formula holds: $$\csc(\mathrm{gd}(x))=\mathrm{coth}(x),$$ where $\csc$ is the cosecant, $\mathrm{gd}$ is the Gudermannian, and $\mathrm{coth}$ is the hyperbolic cotangent.

Proof: