Difference between revisions of "Relationship between cot, Gudermannian, and csch"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cot(\mathrm...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between cot, Gudermannian, and csch|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$
 
$$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$
 
where $\cot$ is the [[cotangent]], $\mathrm{gd}$ is the [[Gudermannian]], and $\mathrm{csch}$ is the [[csch|hyperbolic cosecant]].
 
where $\cot$ is the [[cotangent]], $\mathrm{gd}$ is the [[Gudermannian]], and $\mathrm{csch}$ is the [[csch|hyperbolic cosecant]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:48, 8 June 2016

Theorem

The following formula holds: $$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$ where $\cot$ is the cotangent, $\mathrm{gd}$ is the Gudermannian, and $\mathrm{csch}$ is the hyperbolic cosecant.

Proof

References