Difference between revisions of "Relationship between cot, Gudermannian, and csch"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cot(\mathrm...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$ | $$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$ | ||
where $\cot$ is the [[cotangent]], $\mathrm{gd}$ is the [[Gudermannian]], and $\mathrm{csch}$ is the [[csch|hyperbolic cosecant]]. | where $\cot$ is the [[cotangent]], $\mathrm{gd}$ is the [[Gudermannian]], and $\mathrm{csch}$ is the [[csch|hyperbolic cosecant]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 07:48, 8 June 2016
Theorem
The following formula holds: $$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$ where $\cot$ is the cotangent, $\mathrm{gd}$ is the Gudermannian, and $\mathrm{csch}$ is the hyperbolic cosecant.