Difference between revisions of "Q-number"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $q \in \mathbb{C} \setminus \{1\}$ and define the $q$ numbers | Let $q \in \mathbb{C} \setminus \{1\}$ and define the $q$ numbers | ||
+ | $$[0]_0=0$$ | ||
+ | and for $n>0$ a positive integer, | ||
$$[n]_q=\dfrac{1-q^n}{1-q}=1+q+q^2+\ldots+q^{n-1}.$$ | $$[n]_q=\dfrac{1-q^n}{1-q}=1+q+q^2+\ldots+q^{n-1}.$$ |
Revision as of 19:58, 3 June 2016
Let $q \in \mathbb{C} \setminus \{1\}$ and define the $q$ numbers $$[0]_0=0$$ and for $n>0$ a positive integer, $$[n]_q=\dfrac{1-q^n}{1-q}=1+q+q^2+\ldots+q^{n-1}.$$