Difference between revisions of "Q-number"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $q \in \mathbb{C} \setminus \{1\}$ and define the $q$ numbers
 
Let $q \in \mathbb{C} \setminus \{1\}$ and define the $q$ numbers
 +
$$[0]_0=0$$
 +
and for $n>0$ a positive integer,
 
$$[n]_q=\dfrac{1-q^n}{1-q}=1+q+q^2+\ldots+q^{n-1}.$$
 
$$[n]_q=\dfrac{1-q^n}{1-q}=1+q+q^2+\ldots+q^{n-1}.$$

Revision as of 19:58, 3 June 2016

Let $q \in \mathbb{C} \setminus \{1\}$ and define the $q$ numbers $$[0]_0=0$$ and for $n>0$ a positive integer, $$[n]_q=\dfrac{1-q^n}{1-q}=1+q+q^2+\ldots+q^{n-1}.$$