Difference between revisions of "Euler product for Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem (Euler Product):</strong> The following formula hol...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Euler product for Riemann zeta|Theorem]] (Euler Product):</strong> The following formula holds:
 
<strong>[[Euler product for Riemann zeta|Theorem]] (Euler Product):</strong> The following formula holds:
$$\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}}.$$
+
$$\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$
 +
where $\zeta$ is the [[Riemann zeta function]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 05:12, 4 September 2015

Theorem (Euler Product): The following formula holds: $$\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ is the Riemann zeta function.

Proof: