Difference between revisions of "Q-Sin"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 25: Line 25:
 
=References=
 
=References=
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:56, 24 May 2016

The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$.

Properties

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References

Theorem: The following formula holds: $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ where $D_q$ is the q-difference operator, $\mathrm{Sin}_q$ is the $q$-Sine function, and $\mathrm{Cos}_q$ is the $q$-cosine function.

Proof:

Theorem: The general solution of the $q$-difference equation $D_q^2 y(x) + k^2 y(x) = 0$ is $y(x)=c_1 \mathrm{Cos}_q(kz) + c_2 \mathrm{Sin}_q(kz).$

Proof:

References

[1]