Difference between revisions of "Pythagorean identity for sin and cos"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
<strong>[[Pythagorean identity for sin and cos|Theorem]]: (Pythagorean identity)</strong> The following formula holds for all $x$:
 
<strong>[[Pythagorean identity for sin and cos|Theorem]]: (Pythagorean identity)</strong> The following formula holds for all $x$:
 
$$\sin^2(x)+\cos^2(x)=1,$$
 
$$\sin^2(x)+\cos^2(x)=1,$$
where $\sin$ denotes the [[sine|sine function]] and $\cos$ denotes the [[cos|cosine]] function.
+
where $\sin$ denotes the [[sine]] function and $\cos$ denotes the [[cosine]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 18:30, 1 December 2015

Theorem: (Pythagorean identity) The following formula holds for all $x$: $$\sin^2(x)+\cos^2(x)=1,$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.

Proof: