Difference between revisions of "Pythagorean identity for sin and cos"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
where $\sin$ denotes the [[sine]] function and $\cos$ denotes the [[cosine]] function.
 
where $\sin$ denotes the [[sine]] function and $\cos$ denotes the [[cosine]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> █  
+
<strong>Proof:</strong> From the definitions
 +
$$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$
 +
and
 +
$$\cos(z)=\dfrac{e^{-iz}+e^{-iz}}{2},$$
 +
we see
 +
$$\begin{array}{ll}
 +
\sin^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\
 +
&= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\
 +
&= 1,
 +
\end{array}$$
 +
as was to be shown. █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 04:13, 25 March 2016

Theorem: (Pythagorean identity) The following formula holds for all $x$: $$\sin^2(x)+\cos^2(x)=1,$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.

Proof: From the definitions $$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$ and $$\cos(z)=\dfrac{e^{-iz}+e^{-iz}}{2},$$ we see $$\begin{array}{ll} \sin^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\ &= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\ &= 1, \end{array}$$ as was to be shown. █