Difference between revisions of "Cosine integral"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Ci.png|Graph of $\mathrm{arccos}$ on $(0,20)$.
+
File:Ciplot.png|Graph of $\mathrm{Ci}$.
 
File:Domain coloring cosine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{Ci}$.
 
File:Domain coloring cosine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{Ci}$.
 
</gallery>
 
</gallery>

Revision as of 21:29, 23 May 2016

The cosine integral is defined by $$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$

Relationship to other functions

Theorem

The following formula holds: $$\mathrm{Ei}(ix)=\mathrm{Ci}(x)+i\mathrm{Si}(x),$$ where $\mathrm{Ei}$ denotes the exponential integral Ei, $\mathrm{Ci}$ denotes the cosine integral, and $\mathrm{Si}$ denotes the sine integral.

Proof

References

Videos

Laplace transform of cosine integral

References

<center>$\ast$-integral functions
</center>