Difference between revisions of "Darboux function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function. =Properties= <...")
 
(Properties)
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The Darboux function is [[continuous]].
+
<strong>Theorem:</strong> The Darboux function is [[continuous]] on $\mathbb{R}$.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 12: Line 12:
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The Darboux function is [[nowhere differentiable]].
+
<strong>Theorem:</strong> The Darboux function is [[nowhere differentiable]] on $\mathbb{R}$.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 22:56, 31 December 2015

The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.

Properties

Theorem: The Darboux function is continuous on $\mathbb{R}$.

Proof:

Theorem: The Darboux function is nowhere differentiable on $\mathbb{R}$.

Proof:

References

[1]