Difference between revisions of "Takagi function"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The | + | Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by |
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$ | $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$ | ||
Revision as of 23:02, 31 December 2015
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
- Blancmangefunction.png
Graph of $\mathrm{blanc}$ on $[0,1]$.