Difference between revisions of "Takagi function"
From specialfunctionswiki
Line 1: | Line 1: | ||
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by | Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by | ||
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$ | $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$ | ||
− | |||
<div align="center"> | <div align="center"> | ||
Line 8: | Line 7: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =Properties= | ||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The blancmange function is [[continuous]] on $\mathbb{R}$. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The Blancmange function is [[nowhere differentiable]] on $\mathbb{R}$. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | =References= | ||
+ | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] |
Revision as of 23:03, 31 December 2015
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
- Blancmangefunction.png
Graph of $\mathrm{blanc}$ on $[0,1]$.
Properties
Theorem: The blancmange function is continuous on $\mathbb{R}$.
Proof: █
Theorem: The Blancmange function is nowhere differentiable on $\mathbb{R}$.
Proof: █