Difference between revisions of "Elliptic gamma function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The elliptic gamma function is defined by $$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$")
 
 
Line 1: Line 1:
 
The elliptic gamma function is defined by
 
The elliptic gamma function is defined by
 
$$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$
 
$$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:54, 24 May 2016

The elliptic gamma function is defined by $$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$