Difference between revisions of "Elliptic gamma function"
From specialfunctionswiki
(Created page with "The elliptic gamma function is defined by $$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$") |
|||
Line 1: | Line 1: | ||
The elliptic gamma function is defined by | The elliptic gamma function is defined by | ||
$$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$ | $$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:54, 24 May 2016
The elliptic gamma function is defined by $$\Gamma(z;p,q)=\displaystyle\prod_{m=0}^{\infty} \displaystyle\prod_{n=0}^{\infty} \dfrac{1-\frac{p^{m+1}q^{n+1}}{z}}{1-p^mq^nz}.$$