Difference between revisions of "Taylor series of cosine"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>[[Taylor series of cosine|Theorem]]:</strong> The following | + | <strong>[[Taylor series of cosine|Theorem]]:</strong> The following [[Taylor series]] holds: |
$$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k}}{(2k)!},$$ | $$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k}}{(2k)!},$$ | ||
where $\cos$ denotes the [[cosine]] function. | where $\cos$ denotes the [[cosine]] function. |
Revision as of 05:43, 8 February 2016
Theorem: The following Taylor series holds: $$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k}}{(2k)!},$$ where $\cos$ denotes the cosine function.
Proof: █