Difference between revisions of "Taylor series of sine"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>[[Taylor series of sine| | + | <strong>[[Taylor series of sine|Theorem]]:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds: |
− | $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^ | + | $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k(z-z_0)^{2k+1}}{(2k+1)!},$$ |
where $\sin$ denotes the [[sine]] function. | where $\sin$ denotes the [[sine]] function. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 06:22, 25 March 2016
Theorem: Let $z_0 \in \mathbb{C}$. The following Taylor series holds: $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k(z-z_0)^{2k+1}}{(2k+1)!},$$ where $\sin$ denotes the sine function.
Proof: █