Difference between revisions of "Taylor series of cosine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>[[Taylor series of cosine|Theorem]]:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds:
+
<strong>[[Taylor series of cosine|Theorem]]:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds for all $z \in \mathbb{C}$:
 
$$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k}}{(2k)!},$$
 
$$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k}}{(2k)!},$$
 
where $\cos$ denotes the [[cosine]] function.
 
where $\cos$ denotes the [[cosine]] function.

Revision as of 06:24, 25 March 2016

Theorem: Let $z_0 \in \mathbb{C}$. The following Taylor series holds for all $z \in \mathbb{C}$: $$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k}}{(2k)!},$$ where $\cos$ denotes the cosine function.

Proof: