Difference between revisions of "Ceiling"
From specialfunctionswiki
(Created page with "The ceiling function $\lceil \cdot \rceil \colon \mathbb{R} \rightarrow \mathbb{Z}$ is defined by $$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ i.e. the s...") |
|||
Line 1: | Line 1: | ||
The ceiling function $\lceil \cdot \rceil \colon \mathbb{R} \rightarrow \mathbb{Z}$ is defined by | The ceiling function $\lceil \cdot \rceil \colon \mathbb{R} \rightarrow \mathbb{Z}$ is defined by | ||
$$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ | $$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ | ||
− | i.e. the smallest integer greater than or equal to $x$. | + | i.e., the smallest integer greater than or equal to $x$. |
Revision as of 09:04, 14 May 2016
The ceiling function $\lceil \cdot \rceil \colon \mathbb{R} \rightarrow \mathbb{Z}$ is defined by $$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ i.e., the smallest integer greater than or equal to $x$.