Difference between revisions of "Ceiling"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$
 
$$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$
 
i.e., the smallest integer greater than or equal to $x$.
 
i.e., the smallest integer greater than or equal to $x$.
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:31, 24 May 2016

The ceiling function $\lceil \cdot \rceil \colon \mathbb{R} \rightarrow \mathbb{Z}$ is defined by $$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ i.e., the smallest integer greater than or equal to $x$.