Difference between revisions of "Ceiling"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ | $$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ | ||
i.e., the smallest integer greater than or equal to $x$. | i.e., the smallest integer greater than or equal to $x$. | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:31, 24 May 2016
The ceiling function $\lceil \cdot \rceil \colon \mathbb{R} \rightarrow \mathbb{Z}$ is defined by $$\lceil x \rceil = \min \{ y \in \mathbb{Z} \colon y \geq x \},$$ i.e., the smallest integer greater than or equal to $x$.