Difference between revisions of "Derivative of arccos"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}},$$ | $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}},$$ | ||
where $\mathrm{arccos}$ denotes the [[arccos|inverse cosine]] function. | where $\mathrm{arccos}$ denotes the [[arccos|inverse cosine]] function. | ||
− | + | ||
− | + | ==Proof== | |
+ | If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use [[implicit differentiation]] with respect to $z$ to get | ||
$$-\sin(\theta)\theta'=1.$$ | $$-\sin(\theta)\theta'=1.$$ | ||
The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$: <br /> | The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$: <br /> | ||
Line 10: | Line 11: | ||
Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula <br /> | Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula <br /> | ||
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$ | $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$ | ||
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] |
Revision as of 07:23, 8 June 2016
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}},$$ where $\mathrm{arccos}$ denotes the inverse cosine function.
Proof
If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use implicit differentiation with respect to $z$ to get
$$-\sin(\theta)\theta'=1.$$
The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$:
Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$