Difference between revisions of "Gamma(1)=1"

From specialfunctionswiki
Jump to: navigation, search
Line 6: Line 6:
 
<strong>Proof:</strong> Compute
 
<strong>Proof:</strong> Compute
 
$$\begin{array}{ll}
 
$$\begin{array}{ll}
\Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} d\xi \\
+
\Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} \mathrm{d}\xi \\
&= \displaystyle\int_0^{\infty} e^{-\xi} d\xi \\
+
&= \displaystyle\int_0^{\infty} e^{-\xi} \mathrm{d}\xi \\
 
&= \left[ -e^{-\xi} \right]_{0}^{\infty} \\
 
&= \left[ -e^{-\xi} \right]_{0}^{\infty} \\
 
&= 1,
 
&= 1,

Revision as of 05:41, 16 May 2016

Theorem: The following formula holds: $$\Gamma(1)=1,$$ where $\Gamma$ denotes the gamma function.

Proof: Compute $$\begin{array}{ll} \Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} \mathrm{d}\xi \\ &= \displaystyle\int_0^{\infty} e^{-\xi} \mathrm{d}\xi \\ &= \left[ -e^{-\xi} \right]_{0}^{\infty} \\ &= 1, \end{array}$$ as was to be shown. █