Difference between revisions of "Derivative of sech"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>[[Derivative of sech|Theorem]]:</strong> The following formula holds: | <strong>[[Derivative of sech|Theorem]]:</strong> The following formula holds: | ||
− | $$\dfrac{\mathrm{d}}{\mathrm{d} | + | $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{sech}(z)=-\mathrm{sech}(z)\mathrm{tanh}(z),$$ |
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]] and $\mathrm{tanh}$ denotes the [[tanh|hyperbolic tangent]]. | where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]] and $\mathrm{tanh}$ denotes the [[tanh|hyperbolic tangent]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 08:28, 16 May 2016
Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{sech}(z)=-\mathrm{sech}(z)\mathrm{tanh}(z),$$ where $\mathrm{sech}$ denotes the hyperbolic secant and $\mathrm{tanh}$ denotes the hyperbolic tangent.
Proof: █