Difference between revisions of "Derivative of sech"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Derivative of sech|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{sech}(z)=-\mathrm{sech}(z)\mathrm{tanh}(z),$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{sech}(z)=-\mathrm{sech}(z)\mathrm{tanh}(z),$$
 
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]] and $\mathrm{tanh}$ denotes the [[tanh|hyperbolic tangent]].
 
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]] and $\mathrm{tanh}$ denotes the [[tanh|hyperbolic tangent]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]

Revision as of 07:05, 9 June 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{sech}(z)=-\mathrm{sech}(z)\mathrm{tanh}(z),$$ where $\mathrm{sech}$ denotes the hyperbolic secant and $\mathrm{tanh}$ denotes the hyperbolic tangent.

Proof

References