Difference between revisions of "Antiderivative of sech"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Antiderivative of sech|Theorem]]:</strong> The following formula holds: | <strong>[[Antiderivative of sech|Theorem]]:</strong> The following formula holds: | ||
− | $$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)),$$ | + | $$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)) + C,$$ |
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 22:16, 24 May 2016
Theorem: The following formula holds: $$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)) + C,$$ where $\mathrm{sech}$ denotes the hyperbolic secant, $\arctan$ denotes the inverse tangent, and $\sinh$ denotes the hyperbolic sine.
Proof: █