Difference between revisions of "Modified Bessel I"
m (Tom moved page Modified Bessel I sub nu to Modified Bessel I) |
|||
Line 30: | Line 30: | ||
=References= | =References= | ||
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_374.htm]<br /> | [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_374.htm]<br /> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:36, 24 May 2016
The modified Bessel function of the first kind is defined by $$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$ where $J_{\nu}$ is the Bessel function of the first kind.
Domain coloring of analytic continuation of $I_1(z)$.
Contents
Properties
Theorem
The following formula holds: $$I_{-\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}} \cosh(z),$$ where $I_{-\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\cosh$ denotes the hyperbolic cosine.
Proof
References
Theorem
The following formula holds: $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z),$$ where $I_{\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\sinh$ denotes the hyperbolic sine.
Proof
References
Proposition: The following formula holds: $$I_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} J_{\nu+k}(z) \dfrac{z^k}{k!},$$ where $J_{\nu}$ denotes the Bessel function of the first kind.
Proof: █
Theorem
The following formula holds: $$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ where $\mathrm{Bi}$ denotes the Airy Bi function and $I_{\nu}$ denotes the modified Bessel $I$.
Proof
References
Bessel $I_{\nu}$