Difference between revisions of "Taylor series for error function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Taylor series for error function|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{erf}(z) = \dfrac{2}{\sqrt{\pi}} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k+1}}{k!(2k+1)},$$
 
$$\mathrm{erf}(z) = \dfrac{2}{\sqrt{\pi}} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k+1}}{k!(2k+1)},$$
 
where $\mathrm{erf}$ denotes the [[error function]] and $\pi$ denotes [[pi]], and $k!$ denotes the [[factorial]].
 
where $\mathrm{erf}$ denotes the [[error function]] and $\pi$ denotes [[pi]], and $k!$ denotes the [[factorial]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erfc}}: 7.1.1

Revision as of 04:31, 5 June 2016

Theorem

The following formula holds: $$\mathrm{erf}(z) = \dfrac{2}{\sqrt{\pi}} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k+1}}{k!(2k+1)},$$ where $\mathrm{erf}$ denotes the error function and $\pi$ denotes pi, and $k!$ denotes the factorial.

Proof

References