Difference between revisions of "Error function is odd"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ wh...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Error function is odd|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$
 
$$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$
where $\mathrm{erf}$ denotes the [[error function]].
+
where $\mathrm{erf}$ denotes the [[error function]] (i.e. $\mathrm{erf}$ is an [[odd function]]).
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █  
 
<strong>Proof:</strong>  █  
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erf of conjugate is conjugate of erf}}: 7.1.9

Revision as of 05:01, 5 June 2016

Theorem

The following formula holds: $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ where $\mathrm{erf}$ denotes the error function (i.e. $\mathrm{erf}$ is an odd function).

Proof:

</div>

References