Difference between revisions of "Sine integral"

From specialfunctionswiki
Jump to: navigation, search
Line 20: Line 20:
  
 
<center>{{:*-integral functions footer}}</center>
 
<center>{{:*-integral functions footer}}</center>
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:47, 24 May 2016

The sine integral is defined by $$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$ where $\mathrm{sinc}$ denotes the Sinc function.

Relationship to other functions

Theorem

The following formula holds: $$\mathrm{Ei}(ix)=\mathrm{Ci}(x)+i\mathrm{Si}(x),$$ where $\mathrm{Ei}$ denotes the exponential integral Ei, $\mathrm{Ci}$ denotes the cosine integral, and $\mathrm{Si}$ denotes the sine integral.

Proof

References

Videos

Laplace Transform of Sine Integral

References

<center>$\ast$-integral functions
</center>